layton-eval:
Sideways: a Benchmark for LLM/VLM Reasoning

Raphael Vienne

February 5, 2026

Abstract

Traditional large language model (LLM) benchmarks face a fundamental trade-off between
scalability and ground truth. Human evaluation is accurate but expensive; automated eval-
uation (“LLM-as-a-judge”) scales, but exhibits systematic errors such as self-preference bias,
provider/family bias, position (order) bias, and limited sensitivity to subtle logical flaws [8] 10,
T, 3.

We introduce layton-eval, a high-difficulty reasoning benchmark built from Professor Layton-
style riddles that require both correct answers and sound justifications. To reconcile speed with
validity, we combine automated judging with Prediction-Powered Inference (PPI) [14], treat-
ing a multi-model “jury” as a noisy proxy calibrated against a human-labeled gold set. We
further propose a stratified bootstrap rectification procedure that matches a model’s jury-score
distribution, mitigating regression-to-the-mean effects and reporting uncertainty via confidence
intervals and rank spread.
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1 Introduction

1.1 Motivation and problem statement

A main motivation for layton-eval is capability coverage: many widely used benchmarks do not
probe the breadth of human-level problem-solving, and instead over-index on linear, instruction-
following reasoning.

Concretely, popular benchmarks often emphasize academic and professional knowledge (e.g., MMLU [I]),
school-style math (GSM8K [2]), science QA (ARC [3]), or code synthesis (HumanEval [4]). Broader
evaluation suites exist (e.g., HELM [5] and BIG-bench [6]), but coverage of lateral, puzzle-like rea-
soning and structured wordplay remains limited. On the multimodal side, benchmarks such as
MMMU [7] primarily target expert-level perception and domain knowledge rather than divergent
“thinking sideways.”

In contrast, layton-eval targets reasoning modes that are common in real puzzles and games,
including non-linear (lateral) thinking, out-of-the-box logic, divergent reasoning, and
wordplay. It also naturally extends to visual reasoning for VLMs.

A second motivation is the classical trade-off between:

e Scalability: automated scoring is fast and cheap.

e Ground truth: human scoring is accurate but costly and slow.

This can be viewed as an analogue of the bias-variance trade-off. Purely human evaluation tends
to have lower bias (closer to the target notion of correctness) but higher variance because only a
small number of items can be labeled (and annotators disagree). Purely automated judging tends
to have lower variance (large n is inexpensive) but can introduce systematic bias from judge failure
modes (e.g., self-preference, style bias) [8, [13]. Prediction-Powered Inference (PPI) aims to strike
a balance: use the proxy to reduce variance by scoring many items, and use a gold set to estimate
and correct the proxy’s bias [14] [16].

Automated judging is known to be fallible, especially on multi-step reasoning tasks where plausible
explanations can conceal subtle hallucinations [I1], 13]. Relatedly, rigorous evaluation protocols
for RAG systems in due diligence settings combine human annotation with LLM-judge labels and
PPI-style calibration [17].

2 Benchmark

2.1 layton-eval dataset and task

layton-eval uses Professor Layton-style riddles and multi-step logic puzzles as benchmark items.



The layton-eval dataset was obtained by scraping the Layton Wiki at Fandom (https://layton.
fandom. com/wiki)ﬂ The dataset is available on Hugging Face at rvienne/layton-eval.

The raw scraped material then underwent substantial manual and automated processing, including;:

1. curation of riddles that do not require running the game’s verification engine,
2. classification of riddles into text-based versus vision-based items, and

3. for each riddle, generation of a gold-standard justification from the riddle context and answer.

In total, we curated 503 riddles, of which 186 form the LLM split and 317 form the VLM split.

The resulting benchmark is organized into two splits: an LLM split (text-only riddles) and a VLM
split (vision-based riddles), targeting language-only and multimodal models respectively.

Each item requires:

e a final answer, and

e a justification that can be checked for logical validity.

This setting stress-tests model reasoning beyond short-form multiple-choice accuracy. Moreover,
since some riddles can be formulated as multiple-choice questions (MCQs), a model may occasion-
ally arrive at the correct final answer by chance; in contrast, there is no way to produce a logically
valid justification “out of luck.” This makes the benchmark more robust overall.

3 Background and method

3.1 Judge fallibility

Even frontier models used as judges are imperfect proxies for human reasoning [8) 9] [12] 111 13].
Common failure modes include:

e Being “fooled” by plausible justifications that contain subtle errors or hallucinated
steps [111 [13].

e Self-preference bias: a judge may rate outputs from its own provider more favorably [8 [13].
e Family/provider bias: stylistic familiarity can be mistaken for correctness [8 [12].

e Position/order bias: verdicts can shift when the same outputs are presented in a different
order [10].

!This work uses material from the Professor Layton Wiki at Fandom and all subsequent datasets are licensed
under the Creative Commons Attribution-ShareAlike License.
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3.2 Prediction-Powered Inference (PPI)

Prediction-Powered Inference (PPI) is a framework for estimating a quantity defined in terms of
expensive ground-truth labels (here: human correctness judgments), while leveraging a much larger
set of cheap but imperfect proxy labels (here: automated jury scores) [14] [16].

At a high level, PPI works by:

1. Scoring at scale with a proxy: use the proxy to label many examples, which greatly
reduces variance because we can afford a large n.

2. Calibrating with a gold set: additionally collect a smaller set of human labels, and
estimate the proxy’s systematic error (bias) by comparing proxy vs. human labels on that
overlap.

3. Rectifying the proxy estimate: adjust the proxy-based estimate using the estimated error,
producing an estimator that remains anchored to human judgment while retaining much of
the proxy’s sample-efficiency.

This is a good fit for layton-eval because (i) fully human evaluation of hundreds of riddles across
many models is prohibitively expensive, but (ii) purely automated judging is known to be sys-
tematically biased on subtle multi-step reasoning. PPI explicitly embraces the jury as a noisy
measurement device and uses the gold set to correct it, yielding scores that are both scalable
(proxy-labeled large set) and statistically grounded in human correctness.

All artifacts needed to recompute the PPI estimates (human annotations and per-judge outputs for
each prediction) are released as a companion dataset on Hugging Face at rvienne/layton-eval-ppi.

3.3 Gold set calibration

We collect a smaller human-annotated gold set, with an annotation budget set so that the total
volume of annotations is approximately ~ 3x the number of riddles in each split. Predictions
were selected for human annotation via stratified sampling over riddle ID, provider, and model
within provider, to ensure broad coverage and avoid over-representing any single model family.
We compute PPI independently on each split (LLM and VLM). Human labels are pure booleans (cast
to floats 0.0 or 1.0), while jury scores are discrete-valued averages in [0, 1]. For gold items, we
compute residuals between these values (the calibration “delta”).

3.4 Rectified benchmark scoring

We use the estimated residual to rectify scores on the larger unlabeled set, yielding a point estimate
that is mathematically anchored to human judgment while still leveraging the scale of automated
scoring.


https://huggingface.co/datasets/rvienne/layton-eval-ppi

3.5 Jury setup (dynamic, provider-aware)

We use a 3-judge panel selected from a fixed pool of 4 candidate frontier judges:

e gpt-5.1 (reasoning high),
e gemini-3-pro (reasoning high),
e claude-opus-4.5 (with “thinking” enabled; 32k tokens),

e mistral-large-2512 (with “thinking” disabled).

By default, the jury is {gpt-5.1, gemini-3-pro, claude-opus-4.5}. To mitigate self-preference
and same-provider effects, if the evaluated model is from OpenAl, Google (Gemini), or Anthropic,
we exclude the corresponding judge and include mistral-large-2512 instead.

3.6 Jury score (discrete average of boolean correctness)

Each judge produces a structured verdict indicating whether (i) the final answer is correct and (ii)
the justification is correct (both booleans). We define the judge-level correctness indicator as their
boolean product, i.e., answer A justification.

The final jury score for an item is the average of this indicator across the 3 judges, yielding a

floating-point value with discrete support (e.g., 0, 1/3, 2/3, 1).

3.7 Stratified bootstrapping

A key risk in calibration is regression to the mean: if the gold set does not match the evaluated
model’s difficulty profile, rectification can unfairly pull scores toward a global average [15].

We address this with a stratified bootstrap procedure [I5], [18]:

1. Binning: compute the evaluated model’s jury-score distribution.

2. Matching: resample (with replacement) from the human-labeled pool to mirror that distri-
bution, creating a “virtual model” calibration set.

3. Iteration: repeat (e.g., 10,000 times) to form a distribution of rectified scores.

From this distribution we report:

e a 95% confidence interval (CI) by taking the 2.5% and 97.5% percentiles of the rectified-
score distribution,



e a midpoint point estimate P defined as the center of that interval, and

e the CI half-width W such that, at 95% certainty, the true rectified performance lies in
[P—W, P+ W]

We compute rank spread afterwards, once we obtain such a distribution for each candidate model,
by comparing worst-case and best-case ranking scenarios induced by these 95% intervals.

3.8 Key technical pillars

e Jury ensembling: a 3-judge ensemble drawn from a pool of four frontier judges (with
provider-aware selection) to reduce individual variance and mitigate provider-specific biases.

e Structured justifications: JSON-formatted rationales to reduce “lucky guesses” and enable
more consistent judging.

e Self-preference mitigation: dynamic jury selection excluding the evaluated model’s provider.

e Rank sensitivity: confidence-interval-based rank spread to communicate statistical “jitter.”

4 Results

4.1 LLM split

Rank Model Hints Score 95% CI (+) Rank Spread Provider
1 gemini-3-flash-high 0 85.2 1.4 [1] < [2] gemini
2 gemini-3-pro-high 0 83.9 1.1 [1] < [3] gemini
3 gpt-5.1-2025-11-13-high 0 83.3 0.1 [2] < [3] openai
4 gpt-5.2-2025-12-11-high 0 80.4 0.3 [4] < [5] openai
5 claude-opus-4-5-20251101-thinking-32k 0 79.6 0.6 [4] < [5] anthropic
6 moonshotai-kimi-k2.5-thinking 0 73.4 14 [6] < [6] together
7 claude-opus-4-5-20251101-no-thinking 0 70.2 0.9 [7] < [7] anthropic
8 moonshotai-kimi-k2-thinking 0 66.7 1.7 [8] <> [8] together
9 mistral-large-2512 0 48.7 1.4 [9] < [9] mistral
10 qwen-qwen3-v1-235b-a22b-instruct-£fp8 0 39.0 14 [10] + [10] doubleword

Table 1: Leaderboard on the LLM split of layton-eval (0-hint setting). Scores are reported with
95% CI half-widths from the stratified bootstrap rectification procedure.



4.2 VLM split

Rank Model Hints Score 95% CI (£) Rank Spread Provider
1 gemini-3-flash-high 0 464 1.9 [1] < [2] gemini
2 gemini-3-pro-high 0 46.1 1.9 [1] + [2] gemini
3 gpt-5.2-2025-12-11-high 0 33.4 1.9 [3] < [4] openai
4 gpt-5.1-2025-11-13-high 0 32.3 2.1 [3] < [5] openal
5 moonshotai-kimi-k2.5-thinking 0 28.9 1.8 [4] <> [5] together
6 claude-opus-4-5-20251101-thinking-32k 0 25.1 1.8 [6] < [7] anthropic
7 claude-opus-4-5-20251101-no-thinking 0  23.0 1.9 [6] <> [7] anthropic
8 mistral-large-2512 0 12.6 1.3 [8] <> [8] mistral
9 qwen-qwen3-235b-a22b-instruct-2507-tput 0 9.3 1.5 [9] < [9] together

Table 2: Leaderboard on the VLM split of layton-eval (0-hint setting). Scores are reported with
95% CI half-widths from the stratified bootstrap rectification procedure.

Interpreting the LLM-VLM gap. We observe a large performance gap between the LLM and
VLM splits. Part of this difference is expected: visual riddles are often harder to solve in the original
games, and visual reasoning is plausibly less common (and less emphasized) in frontier-model
training and evaluation.

However, we also suspect an input-level and architectural component: Nintendo DS-era assets can
be low-resolution and visually noisy, and current VLM perception stacks may simply not have the
“right eyes” for this regime (e.g., resolution limits, aliasing, compression artifacts), which may also
be underrepresented in typical pretraining corpora. This suggests that progress toward human-level
puzzle-solving may be constrained not only by reasoning ability, but also by structural perceptual
affordances of the model architecture.

4.3 Interactive data exploration and in-depth analysis

To facilitate exploration beyond the aggregate leaderboard, we provide a web interface to browse
the full evaluation data, including overall results, breakdowns by riddle category, and per-riddle
results:

https://vienneraphael.github.io/layton-eval/

5 Reproducibility

All code, prompts, and evaluation scripts needed to reproduce the experiments and to self-report
model performance are available in the layton-eval repository:

https://github.com/vienneraphael/layton-eval
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6 Cost Report

We report approximate inference costs incurred during evaluation (including the cost of judging
where applicable). The costs in Table [3[are the batched costs. We relied on providers’ batch APIs;
for the estimated unbatched costs, we assume a default 50% batch economy (i.e., batched cost is
~ 50% of unbatched cost), and a 66% batch economy for Doubleword.

Provider Batched Cost (USD) Est. Unbatched (USD) Notes

Anthropic 104.00 208.00 2 models (including judge)

OpenAl 63.00 126.00 2 models (including judge)

Gemini 3.47 6.94 2 models (including judge)

Together 21.00 42.00 3 models

Mistral 1.20 2.40 1 model (including judge)

Doubleword 0.13 0.39 1 model (no judge; 66% batch economy)
Total 192.80 385.73

Table 3: Approximate inference costs by provider for this evaluation (batched), with a rough
unbatched estimate assuming a 50% batch economy by default (66% for Doubleword).

7 Conclusion

layton-eval probes lateral, puzzle-like reasoning in both text-only (LLM) and vision-based (VLM)
settings. It combines scalable automated judging with Prediction-Powered Inference (PPI) to re-
main anchored to human correctness.

Our results indicate that there is still substantial room for improvement on both splits: even top
frontier models systematically fail some riddle categories, suggesting that key forms of non-linear
reasoning and robust justification are not yet reliably acquired.

Despite this gap, the relative ranking produced by layton-eval is highly consistent with other
widely used benchmarks and with the broader community signal from LM Arena (now arena.ai) [19],
reinforcing the benchmark’s external validity.

Finally, we view layton-eval as a living evaluation: we will continue to expand coverage and update

the leaderboard as new models emerge, and we look forward to tracking how future generations
close the remaining reasoning and perception gaps.
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